Decision Process Evolution in Customer Channel Choice

The growing number of sales channels through which customers can make purchases has made it imperative for managers to understand how customers decide which channels to use. However, this presents a significant challenge because there is reason to believe the channel decision process evolves over the lifetime of the customer. The authors document the existence and nature of this phenomenon by analyzing the evolution of a customer's channel choice decision process from a trial stage to a posttrial stage. First, they analyze data for a book retailer and replicate their analysis using data from a durables and apparel retailer. Their results suggest that (1) customers’ decision processes do evolve, (2) a minority but sizeable segment changes decision processes within the observation period, and (3) customers who change do so from a decision process in which they are highly responsive to marketing to one in which they are less responsive. The authors illustrate and discuss the implications for both managers and researchers.

Keywords: multichannel marketing, channel migration, customer relationship management, customer channel choice

The ever-expanding multiplicity of channels through which customers can purchase makes it imperative for managers to understand how customers decide which channels to use. One potential benefit of this understanding is that managers can then fine-tune channel strategies to enhance customer value through effective multichannel customer management (Neslin et al. 2006). While researchers have made progress in understanding the customer channel decision process (Blattberg, Kim, and Neslin 2008, chap. 25), the managerial press reports that retailers’ knowledge of this decision process is still limited and that surprisingly few companies are effective in managing multichannel strategies (Myers, Van Metre, and Pickersgill 2004; Noble, Shenkan, and Shi 2009; Weinberg, Parise, and Guinan 2007).

We propose that one factor contributing to the difficulty in understanding the customer channel decision process is that the process is a moving target—in other words, it evolves over the lifetime of the customer. For example, this would mean that managers need to treat new-to-the-firm customers differently than mature customers in terms of multichannel customer policy. A newly acquired customer may be in a “deliberative” mind-set (Gollwitzer and Bayer 1999) and thus be open to suggestions about which channel to use (i.e., responsive to marketing efforts); in contrast, as the customer learns more about the firm’s channels, he or she becomes less receptive to these efforts. This would mean that the window during which to “right-channel” the customer (Neslin and Shankar 2009) may be directly after the customer is acquired.

Therefore, it is critical that managers understand if, and if so how, the customer channel decision process evolves. The purpose of this study is to investigate the existence and nature of this evolution and explore its managerial implications. Our focus is not about which channels consumers choose to make their purchases in, but how they decide which channels to choose for purchase and how that decision process changes over time. We examine four major questions:

1. Does the customer channel choice decision process change over time? That is, is decision process evolution a real phenomenon?
2. If so, how many customers “learn” a new decision process quickly (learners) versus how many customers evolve more gradually (stayers)?
3. How does the learners’ initial, or trial, stage decision process compare with their later or posttrial stage decision process?
4. What are the profit implications for more effective multichannel customer management?

Our findings across two data sets confirm that the customer decision process changes over time. In a data set in which a book club retailer acquires customers and we observe these customers over time, a significant learner segment (22% of customers) becomes less inertial with respect...
to channel choices and more driven by channel preferences. At first, their channel decisions are shaped significantly by the firm’s marketing efforts, but later they become less responsive to marketing. These changes are set in motion soon after a company “acquires” a customer. Therefore, companies should try to “right-channel” customers soon after they are acquired. Customers who are more likely to learn can be characterized according to directly measurable indicators such as how these customers are acquired, their proclivity to provide their e-mail address, and their age. We illustrate that by using these characteristics to identify the learner segment and by using e-mail to transition them early into the cheaper Internet channel, the company can increase its profits by approximately 24%. In a second data set, provided by a durables/apparel retailer that has just introduced a new purchase channel, we confirm that customers become less responsive to marketing over time, although do not find that the process becomes more preference driven over time.

We proceed as follows: We develop a framework for the channel decision process and a taxonomy of potential evolution patterns. Then, we discuss the theory of why decision processes should evolve and advance hypotheses. Next, we describe our methodology for measuring decision process evolution. We then show our data, results, and profitability illustration. We conclude with a discussion of implications for research and practice.

A Taxonomy for Categorizing Decision Process Evolution

Blattberg, Kim, and Neslin (2008) and Neslin et al. (2006) summarize six factors that determine customer channel choice: (1) marketing, (2) channel attributes, (3) social influence, (4) channel integration, (5) individual differences, and (6) situational factors (see Figure 1). Researchers have organized these factors into marketing, channel preferences, inertia or state dependence, and unobserved factors, as shown in the right side of Figure 1. This suggests that the channel choice decision can be represented as follows:

\[
\text{Channel choice} = f(\text{marketing, channel preference, state dependence})
\]

The drivers of channel choice in Equation 1 and their relative impact characterize the channel choice decision process. Several researchers have estimated models according to Equation 1 (Ansari, Mela, and Neslin 2008; Knox 2006; Thomas and Sullivan 2005; Venkatesan, Kumar, and Ravishanker 2007; Verhoef, Neslin, and Vroomen 2007). Knox shows that channel preference can change over time. A common finding is that customers differ in the relative impact the three drivers have on their channel choice process. We account for this heterogeneity and also allow the relative impact of the three factors to evolve over time.

FIGURE 1

A Framework for the Multichannel Choice Process: Theory Translated into Models

Notes: By “theory,” we mean the factors that have been identified as influencing customer’s channel choices (for a discussion, see Blattberg, Kim, and Neslin 2008; Neslin et al. 2006).
Figure 2 shows how the relative impact of preferences, marketing, and inertia define a taxonomy of potential evolution patterns. Starting from the left, we ask whether the decision is preference based or non–preference based. Next, we ask whether the customer is marketing responsive or not marketing responsive. This produces four potential decision processes. The arrows show how the customer’s process might evolve from a trial to a posttrial stage. A customer’s trial stage process might be non–preference based but highly responsive to marketing (Category 3), but it might evolve to a posttrial classification of preference based and not marketing responsive (Category 2). There are 12 possible evolution patterns and four cases in which the process does not change.

Notes: Customers in Category 1 have well-established preferences for various channels but can be influenced by marketing activities to switch channels. Customers in Category 2 have well-established preferences but are less influenced by marketing activities. For example, they always buy on the Internet, and marketing has little influence on which channel they choose. Customers in Category 3 tend to use the channel they used the previous time, unless marketing directs them to do otherwise. These customers are habitual, but their habits can rather easily be changed. Customers in Category 4 are also inertial but pay little attention to marketing. They will use the same channel out of habit until an unobserved factor induces them to use a different channel. For example, these customers may start off buying from the catalog, but for a particular purchase, they may be pressed for time and therefore use the Internet. They then continue using the Internet. The figure also shows the possibility that the process does not change; that is, the customer is a stayer. This is signified by the solid lines in the figure.

Hypotheses

This first question is, Why should the decision process evolve? Theory often starts with observation, and this is the case with decision process evolution. Aaker (1971) finds that preferences for a new product develop over a trial stage, in which the consumer learns about the product, to a posttrial stage, in which the consumer has learned his or her final preference for the product and purchases accordingly. This can be viewed as isomorphic to Gollwitzer and Bayer’s (1999) theory that consumer decision making moves from a deliberative to an implemental stage. In the deliberative stage, the consumer is trying to determine what to do, which is then executed during the implemental stage. Aaker’s and
executing the chosen decision process. is learned, the customer adopts an implemental mind-set, will simplify things by using the same channel used previ-
ously. In terms of Gollwitzer and Bayer’s (1999) theory, the
channel preferences, how he or she will respond to the firm's
learning means that the customer determines his or her deci-
sion process will be. After this process is learned, the customer adopts an implemental mind-set, executing the chosen decision process.

This clarifies what is being learned—the decision process—which in turn prompts the question of why it is being learned. There are at least three reasons:

1. **Motivation and ability:** Motivation and ability are prereq-
uisites to learning (Bettman and Park 1980; Hoch and Deighton 1989; MacInnis, Moorman, and Jaworski 1991). These factors are salient when the cost of an incorrect decision is high. For example, the customer may buy a product for a specific event using a catalog, but if the product is delivered late, the customer pays a cost by not having it when it was needed. These factors are also relevant when customers have the ability to evaluate their decisions. The channel experience is easy to evaluate in terms of service convenience, effort, and so on (Verhoef, Neslin, and Vroonen 2007).

2. **Lack of task familiarity:** Learning is more likely to take place when customers are not familiar with the task at hand (Alba and Hutchinson 1987; Hoch and Deighton 1989; Johnson and Russo 1984). For example, newly acquired customers may have experience with buying on the Internet or with the policies of certain stores but not with the chan-
nels offered by the particular company for which they have just become a customer. Thus, when they are not familiar with the channel environment, there are important things for them to learn.

3. **Unsatisfying experiences:** An unsatisfying experience (e.g., a channel was not as convenient as expected) may cause the customer to reassess and try another channel. Previous research has shown that unsatisfying experiences can have a profound impact on future behavior (Mattila 2003; Weiner 1986).

In summary, a customer’s decision processes should evolve because of learning, to the extent that motivation and ability, lack of task familiarity, and unsatisfying expe-

1Note that although we emphasize the role of learning, there are other potential reasons the decision process might change. In the channel choice context, these would include obtaining better Internet connectivity.

H1: The channel choice process for the average customer evolves over time.

We specify “average customer” because the factors driving learning—motivation and ability, lack of task familiarity, and unsatisfying experience—vary across customers. Some customers may be uninvolved shoppers and thus not motivated to evaluate their channel experience. Some (e.g., those who shop for others’ in addition to their own needs) may not fully be able to evaluate the outcome of their channel choice. Others may be so experienced with shopping that they are highly familiar with the channel selection pro-

H2: The likelihood that the channel decision process evolves varies across customers.

We now turn to hypothesizing the patterns of evolution most likely to surface when we classify customers into the taxonomy depicted in Figure 2. The literature suggests the trial stage will be relatively less driven by preferences than the posttrial stage (Heilman, Douglas, and Wright 2000; Meyer and Sathi 1985). Gollwitzer and Bayer (1999) sug-

H3: The trial stage of the customer decision process is less pre-
ference dominated than the posttrial stage.

The question of which channel to choose is inherently more challenging for a newly acquired customer or a cus-
tomer facing a new channel environment. Therefore, the trial stage of the customer decision process is characterized by complexity as well as goal uncertainty. Consumers are known to resort to simplifying heuristics in such situations (Payne, Bettman, and Johnson 1992; Tversky and Kahneman 1974). One possible heuristic, essentially the availabil-
ity heuristic (Tversky and Kahneman 1974), would be to bias current channel choices toward the channel last cho-

H4: The trial stage of the customer decision process is more inertia dominated than the posttrial stage.

Gollwitzer and Bayer (1999) theorize that consumers in the deliberative stage have an open mind-set and are responsive to information. When they move to the implemental stage, they have less need for information, so communica-
tions are less influential. Previous work has explored tempo-
ral differences in marketing effects. Narayanan, Manchanda, and Chintagunta (2005) find that marketing communications reduce uncertainty about pharmaceutical product qual-
ity in the early launch phases and reinforce preferences in
subsequent stages. Overall, information has a lower impact over time (see Figure 1 in Narayanan, Manchanda, and Chintagunta 2005). Similarly, Lee and Ariely (2006) show that promotion effectiveness varies depending on the consumer’s mind-set (i.e., deliberative vs. implemental) and, in particular, that it is greater when consumers’ goals are less well defined. These considerations suggest the following hypothesis:

\[H_1: \text{The trial stage should be more marketing responsive than the posttrial stage.} \]

Methodology

Following our goals, we sought to develop a methodology for determining whether the customer channel choice decision process evolves over time, how this differs across customers, and how the trial stage process compares with the posttrial stage process. To accomplish this, we build on previous work (Ansari, Mela, and Neslin 2008; Thomas and Sullivan 2005) and develop an analysis consisting of two components: (1) a model that captures the evolution process and (2) two logit channel choice models, one for the trial stage and the other for the posttrial stage. All parameters in these models vary across customers, so we can examine how the evolution process differs from customer to customer and distinguish fast evolvers (learners) and slower evolvers (stayers).

The evolution component quantifies how many purchase occasions the customer takes to transition from the trial to the posttrial stage. We use the purchase occasion as our unit of analysis because our theory posits that the decision process changes as a result of learning from the customer’s channel experiences. Specifically, we analyze the number of purchase occasions it takes for the customer to evolve from the trial to the posttrial stage using a simple geometric distribution. Specifically, let \(q_h \) be the conditional probability that customer \(h \) has not moved by the \(t \)-th purchase occasion, so the probability customer \(h \) moves to the posttrial stage by the \(t \)-th purchase occasion. These two quantities are related as follows:

\[
\begin{align*}
q_h^t & = 1 - (1 - q_h)^t - 1, \\
\end{align*}
\]

This is because \((1 - q_h)^t - 1 \) is the probability the customer has not moved by the \(t \)-th purchase occasion, so the converse, \(1 - (1 - q_h)^t - 1 \), is the probability the customer has moved by the \(t \)-th purchase occasion. Note that \(p_h \) is an increasing function of \(q_h \) (the more likely the customer is to change on any given purchase occasion, the more likely it is that the customer will have changed by purchase occasion \(t \)) and an increasing function of \(t \) (the more purchase occasions, the more likely it is that the customer will have evolved).

The geometric distribution with a single parameter \(q_h \) is parsimonious, though it implies that the most likely time for the customer to evolve is immediately after acquisition or after the decision environment changes. To investigate this assumption, we tested two alternative distributions (the discrete Weibull and a conditional logit). The results show that the geometric specification outperformed the others (see Web Appendix W1 at http://www.marketing-power.com/jmnov11). We also note that the estimated values of \(q_h \) suggest that the mean time customers take to evolve to the posttrial stage is 23 purchase occasions, with a standard deviation of 5.4. This means there is much variability in evolution rates, and by no means do most customers evolve right away.

The second component of our analysis consists of two logit channel choice models, one for the trial stage and one for the posttrial stage. The term \(U_{ht}^{t} \) represents the utility that customer \(h \) derives from choosing channel \(j \) in purchase occasion \(t \). We distinguish between \(U_{ht}^{0} \) and \(U_{ht}^{1} \), where the superscript 0 indicates trial and 1 indicates posttrial. Therefore, \(U_{ht}^{0} \) is the utility for customer \(h \) in choosing channel \(j \) at purchase occasion \(t \), given the customer is in the trial stage, and \(U_{ht}^{1} \) is the utility for customer \(h \) in choosing channel \(j \) at purchase occasion \(t \), given the customer is in the posttrial stage. These utilities are a function of the factors shown in Equations 1 and Figure 1:

\[
\begin{align*}
U_{ht}^{0} & = \alpha_{ht}^{0} + \beta_{ht}^{0}CS_{ht} + \beta_{ht}^{0}ES_{ht} + \beta_{ht}^{0}LC_{ht} + \epsilon_{ht}^{0}, \quad \text{and} \\
U_{ht}^{1} & = \alpha_{ht}^{1} + \beta_{ht}^{1}CS_{ht} + \beta_{ht}^{1}ES_{ht} + \beta_{ht}^{1}LC_{ht} + \epsilon_{ht}^{1},
\end{align*}
\]

where

\[
\begin{align*}
\alpha_{ht}^{0} & = \text{customer } h \text{’s preference for channel } j \text{ during the trial stage (} k = 0 \text{) or the posttrial stage (} k = 1 \text{)}; \\
CS_{ht} & = \text{number of catalogs sent to customer } h \text{ during the quarter in which purchase occasion } t \text{ occurs}; \\
ES_{ht} & = \text{number of e-mails sent to customer } h \text{ during the quarter in which purchase occasion } t \text{ occurs}; \\
LC_{ht} & = 1 \text{ if customer } h \text{ purchased from channel } j \text{ on the purchase occasion before purchase occasion } t \text{ and } 0 \text{ if otherwise. This captures state dependence}; \\
\beta_{ht}^{0} & = \text{impact of catalogs (} m = 1 \text{) or e-mails (} m = 2 \text{) on customer } h \text{’s utility for channel } j \text{ during the trial stage (} k = 0 \text{) or the posttrial stage (} k = 1 \text{)}; \\
\beta_{ht}^{1} & = \text{impact of the previous purchase being in a particular channel on the utility for that channel, for customer } h \text{ at purchase occasion } t \text{, during the trial stage (} k = 0 \text{) or the posttrial stage (} k = 1 \text{)}; \quad \text{and} \\
\epsilon_{ht}^{0} & = \text{error term for customer } h \text{ for channel } j \text{ during the trial stage (} k = 0 \text{) or the posttrial stage (} k = 1 \text{) for purchase occasion } t. \text{ For example, this includes situational factors not directly observable by the researcher.}
\end{align*}
\]

The term \(\alpha_{ht}^{k} \) captures channel preferences, \(\beta_{ht}^{k} \) captures the importance of marketing, and \(\beta_{ht}^{k} \) captures the importance of inertia or state dependence. The relative sizes of these customer-specific parameters enable us to classify customers into the categories defined in Figure 2, both before and after they change decision processes.

Using Equations 3 and 4 and assuming an extreme value distribution for the error terms, we have two logit choice
models. Equation 2 indicates the likelihood the customer is using the trial or posttrial model at purchase occasion t. Combining these components yields the following probability customer h chooses channel j at purchase occasion t: 3

$$
P_{htj} = (1 - p_{ht}) \left(\frac{\exp(U_{htj}^0)}{\sum_{j=1}^J \exp(U_{htj}^0)} \right) + p_{ht} \left(\frac{\exp(U_{htj})}{\sum_{j=1}^J \exp(U_{htj})} \right).$$

With probability $(1 - p_{ht})$, the customer is still in the trial stage and thus is using the first logit model; with probability p_{ht}, the customer has evolved and is using the second logit model. On the customer’s first purchase occasion, $t = 1$, so $p_{ht} = 0$ (Equation 2), and the customer’s decision process is driven entirely by the trial model. Over time, p_{ht} increases to a degree determined by the customer’s parameter q_h, and the process becomes increasingly driven by the posttrial model. For any purchase occasion, the customer’s probability of choosing channel j is a weighted average of the trial and posttrial models, the weights being the likelihood that the customer is in the trial stage or the posttrial stage, respectively. Because the weight placed on the posttrial model increases as the customer accumulates more purchases (Equation 2), the posttrial model becomes more important as purchases accumulate.

Data and Estimation

Our main data set is from a major European book retailer operating in one country. The retailer uses three sales channels—physical retail stores, catalogs, and the Internet—and uses a subscription business model. Thus, to be eligible to purchase, each customer must become a member. A code is associated with each customer, tracking each time he or she purchases and from which channel. Therefore, we have information on which channel each customer selected on each purchase occasion, the date of each purchase, how much was spent, the number and types of communications (e-mails and catalogs) each customer received and when they were received, and age and gender demographics.

Each channel shares the same assortment and price. Communications were not targeted according to channel usage. This means that each channel was treated the same in terms of marketing activities. This gives us the opportunity to measure intrinsic customer preferences for each channel.

The period of observation is January 2002–June 2006. The retailer monitored customers and made customer-marketing decisions on a quarterly basis. Therefore, we

3We also estimated Equation 5 with interactions effects and/or diminishing returns to marketing investments (e.g., Thomas and Sullivan 2005; Venkatesan, Kumar, and Ravishanker 2007). In addition, we tested a model with a catalog stock variable that allows for cumulative and carryover effects as the customer gets more catalogs. However, the fit of all these models was lower, and the interpretation of the parameters estimates was essentially identical.

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of purchase occasions (per year)</td>
<td>3.1</td>
<td>1.1</td>
<td>.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Average number of purchase occasions over relationship</td>
<td>14.7</td>
<td>2.9</td>
<td>7.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Average returns (in US$ per quarter)</td>
<td>.4</td>
<td>3.5</td>
<td>.0</td>
<td>104.4</td>
</tr>
<tr>
<td>Average number of catalogs received (per quarter)</td>
<td>2.0</td>
<td>.7</td>
<td>.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Average number of e-mails received (per quarter)</td>
<td>.7</td>
<td>2.0</td>
<td>.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Age (years)</td>
<td>43.8</td>
<td>14.6</td>
<td>21.0</td>
<td>88.0</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>35.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Channel Usage a

<table>
<thead>
<tr>
<th>Channel Usage a</th>
<th>% of Customers</th>
<th>Average Number of Purchase Occasions per Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainly catalog</td>
<td>27.6%</td>
<td>14.6</td>
</tr>
<tr>
<td>Mainly Internet</td>
<td>6%</td>
<td>14.8</td>
</tr>
<tr>
<td>Mainly store</td>
<td>42.4%</td>
<td>15.3</td>
</tr>
<tr>
<td>Catalog and store</td>
<td>15.4%</td>
<td>13.4</td>
</tr>
<tr>
<td>Catalog and Internet</td>
<td>8.4%</td>
<td>14.7</td>
</tr>
<tr>
<td>Internet and store</td>
<td>1.2%</td>
<td>15.3</td>
</tr>
<tr>
<td>Catalog, Internet, and store</td>
<td>4.3%</td>
<td>14.6</td>
</tr>
</tbody>
</table>

aMainly means that at least 95% of purchases were made on that channel. Similarly, we classified as two-channel/three-channel users those customers who made at least 95% of purchases using two channels/three channels.
Results

The Existence of Choice Evolution and Its Variation Across Customers

We test for the existence of decision process evolution (H1) by comparing our proposed model (Equations 2–5) with a logit model that does not distinguish between trial and posttrial stages (Model 1).4 We test whether the likelihood of evolution varies across customers (H2) by comparing the proposed model with a logit model that assumes each customer starts off using one logit model and moves to another logit model after the same a priori defined number of purchase occasions (nine; Model 2).5 We compare these models using both the deviance information criterion (DIC) statistic (Spiegelhalter et al. 2002) and the hit rate (see Web Appendix W4 at http://www.marketingpower.com/jmnov11). The proposed model (DIC = 6525.2, hit rate = 72.9%), which assumes a distinct trial and posttrial logit model and a heterogeneous trial period length across customers, is superior to both Model 1 (DIC = 6881.0, hit rate = 57.9%) and Model 2 (DIC = 6648.2, hit rate = 56.9%). These results support H1 and H2, indicating the existence of channel choice evolution and suggesting that the likelihood of evolution varies across customers.

Prevalence of Decision Process Evolution and Channel Usage of Learners Versus Stayers

The preceding results suggest that customers change decision processes. Next, we want to know how prevalent this behavior is. To investigate this, we compute the probability that customer h evolves to the posttrial stage by his or her last observed purchase occasion (see Web Appendix W5 at http://www.marketingpower.com/jmnov11). The expected value of this probability is .22, which means that we expect 22% of customers to have changed decision processes by the end of the observation period. We ordered customers according to their individual probability and labeled the 22% highest as the learners. The logic is that the customers with the highest probability of changing are the ones we would expect to change by the end of the observation period. The remaining customers were classified as stayers (i.e., not expected to change by the end of the observation period). The average probability of changing for stayers is .14 and for learners is .49. Using Equation 2, we calculated that, on average, it takes the learner 9 purchase occasions to evolve (see Web Appendix W5 at http://www.marketingpower.com/jmnov11). By the same token, it takes an average of 32 purchase occasions for a stayer to evolve, indicating a clear separation between the two groups.

Table 2 shows learners’ versus stayers’ usage of various channels and reveals an intriguing finding: Stayers are mainly single-channel users, while learners are predominantly multichannel. We conducted a sensitivity analysis regarding this finding by relaxing the 95% requirement used to identify single channel customers (see note a in Table 2). We find that this result is robust to the rule for defining a multichannel customer. This is an important exploratory finding and a characterization of the multichannel customer previously not demonstrated.

Describing and Contrasting the Trial and Posttrial Decision Processes

Table 3 presents the estimates of the mean parameters for the proposed model. The intercept estimates suggest that customers prefer the store to the Internet in both trial and posttrial stages. This may seem counterintuitive given the popularity of the Internet in book retailing. However, the customers in our sample essentially had joined a loyalty club for a book retailer and therefore presumably were avid readers. It is sensible that such customers would enjoy browsing through books and purchasing in the store. Also, the stores were a relatively new channel for the retailer, which opened its first store in 2000. Thus, in contrast to the prevailing tradition in the book industry of bookstores being the “incumbent” channel, in our case, the store was the “novel” channel. While the store is, on average, preferred over the Internet, the intercept for the catalog over the store is not significant for either the trial or posttrial periods, showing that these two channels were equally preferred on average.

We now contrast the trial and posttrial decision processes. We tested whether differences between the trial and posttrial coefficients were statistically significant (see Table 2).

Table 2: Stayers Versus Learners: Channel Choice Behavior*

<table>
<thead>
<tr>
<th>Channel Usage</th>
<th>Stayers (793 Customers)</th>
<th>Learners (225 Customers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainly catalog</td>
<td>35.4%</td>
<td>—</td>
</tr>
<tr>
<td>Mainly Internet</td>
<td>.8%</td>
<td>—</td>
</tr>
<tr>
<td>Mainly store</td>
<td>54.5%</td>
<td>—</td>
</tr>
<tr>
<td>Catalog and store</td>
<td>6.2%</td>
<td>48.0%</td>
</tr>
<tr>
<td>Catalog and Internet</td>
<td>2.6%</td>
<td>28.9%</td>
</tr>
<tr>
<td>Internet and store</td>
<td>.1%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Catalog, Internet, and store</td>
<td>.4%</td>
<td>18.2%</td>
</tr>
</tbody>
</table>

Multiple-Channel Shopper

<table>
<thead>
<tr>
<th></th>
<th>Stayers</th>
<th>Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>9.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Two-channel buyer</td>
<td>8.9%</td>
<td>81.8%</td>
</tr>
<tr>
<td>Three-channel buyer</td>
<td>.4%</td>
<td>18.2%</td>
</tr>
<tr>
<td>No</td>
<td>90.7%</td>
<td>—</td>
</tr>
</tbody>
</table>

Mainly means that at least 95% of purchases were made on that channel. Similarly, we classified as two-channel/three-channel users those customers who made at least 95% of purchases using two channels/three channels.

4Model 1 essentially assumes that $a_{0j} = \alpha_{1j}$ and $b_{m0j} = \beta_{m1j}$ for $m = 1, 2, 3$ in Equations 3–4.

5Nine is the median number of purchase occasions. We tested other numbers and also found the proposed model was superior (6715.9 for 3 purchase occasions, 6725.5 for 5, 6804.3 for 12, and 6970.6 for 15 versus DIC = 6525.8 for the proposed model). The model with 1 purchase occasion yielded DIC = 6631.1 but did not converge. We also tested a model for which q_0 was constant across customers (DIC = 10,204.0), but it also did not converge.
We computed elasticities at the mean value of the continuous variables and the mode of the categorical variables. A positive coefficient means that a customer is more likely to choose channel j than the base channel. The base channel is the store.

Notes: Bold indicates that the 95% posterior distribution for the parameter does not include zero. The standard deviation of the posterior distribution is in parentheses. For identification purposes, we set one channel (the store) as the base.

We found that preferences for the store versus the Internet significantly increase. This suggests that in the posttrial stage, customers base their decision processes more on channel preferences than habitual behavior, as we predict in H1 and H2.

We have four marketing coefficients for each stage (catalog’s impact on catalog vs. store and Internet vs. store, and e-mail’s impact on catalog vs. store vs. Internet vs. store). In three of four cases, the marketing coefficient becomes significantly smaller in the posttrial model, meaning that customers evolve toward a decision process in which they have less need for marketing information, in support of H2.

The preceding conclusions are based on comparing the magnitudes of coefficients. We also examined pseudo t-statistics, calculated as the mean value of the coefficient divided by its standard deviation (LeSage and Fischer 2010, p. 429). These results are consistent with the magnitude results noted previously (the Internet vs. store preference pseudo t-statistic increases from 2.48/.39 = 6.36 in the trial period to 3.78/.46 = 8.22 in the posttrial period, the state dependence statistic decreases from 6.82 to 5.06, and the pseudo t-statistics for marketing decrease in the three cases in which the magnitudes decrease and increase in the one case in which the magnitude increases).

In summary, these results suggest that the decision process evolves in two main ways: (1) Channel preferences become more important and state dependence less important over time (H1 and H4), and (2) in general, marketing communication becomes less effective (H2). It is noteworthy that our findings indicate consumers do not always link catalogs and e-mails to their “natural” purchase channels, the catalog and Internet, respectively. For example, the negative sign for the catalog’s impact on catalog versus store suggests that catalogs “promote” the store. The catalogs used by this company did not include store promotions but did list the locations of stores. This could account for the tendency of catalogs to promote store choice over catalog in the trial period. Another possible explanation is the “research shopper” phenomenon (Verhoef, Neslin, and Vroomen 2007). Research shopping means the customer uses one channel for search (gathering information) and a different channel for purchase. For example, customers might find catalogs to be a convenient way to investigate what products are available, but the store is a superior purchase channel for them because they can sample the product by thumbing through the books. We also found that e-mails promote catalogs versus store in the posttrial period. It may be that readers of e-mails are goal-directed and thus gather all the information they need from the e-mail. They then find it more convenient to purchase the product from the catalog, which just requires a phone call, than from the store. Blattberg, Kim, and Neslin (2008, p. 647) articulate a broader view of this by raising the notion of channel/marketing congruency. They state that this is an underresearched area, and although it is not the main purpose of this article, our results add to the substantive knowledge base on this issue.

Characterizing Evolution Patterns

We now focus on learners and classify them in terms of the taxonomy depicted in Figure 2; in other words, we quantify the extent to which different decision processes are employed in the trial versus posttrial stages and examine the patterns by which learners evolve from one process to another. The customer-level parameter estimates enable us to accomplish this classification.

By comparing the magnitudes of the channel preference parameters with the state dependence parameters, we classify customers’ decision processes as either preference based or non–preference based. For example, if customer H’s state dependence parameter is higher than his or her preference for the catalog over the store and the Internet over the store (in absolute values), we classify this customer as non–preference based (for details, see Table 4, Panel A).
After classifying customers as preference or non-preference based, we further distinguish them according to their marketing responsiveness. We compare individual marketing elasticities with the median value across customers and classify customers in the high marketing responsiveness group if e-mails or catalog elasticities are greater than the respective median elasticities (for details, see Table 4, Panel B).

We used the aforementioned decision rules to classify each learner into one of the four decision process categories. We then “cross-tabbed” category membership by decision stage to examine the patterns by which customers evolve from one decision process category to another. Figure 3 shows these evolutions. The key findings are as expected: a tendency to evolve from non-preference-based to preference-based decision making and a tendency to evolve to lower marketing responsiveness. In particular, Figure 3 highlights two main types of evolutions: from Trial Category 3 to Posttrial Category 1 (42% of all learners); and from trial Category 3 to Posttrial Category 2 (51%). Both these evolutions are from a non-preference-based to a preference-based decision process.

Customers in Category 3 are responsive to marketing and non-preference based. This suggests that marketing bounces them from channel to channel during the trial stage. However, these customers eventually form strong channel preferences, which makes them preference-based decision makers. Some of them remain responsive to marketing (i.e., marketing can still influence their choice), but for the majority, marketing diminishes in importance.

Robustness Checks

Robustness with Respect to Assumptions

We conducted robustness checks of some of our key assumptions by (1) investigating whether observed heterogeneity and time variance influence the customer’s propensity to evolve and (2) modeling a relationship between trial and posttrial parameters. To investigate the first issue, we estimated models with q_h, a function of customer variables (age, gender; Model A) and time-varying variables including marketing (Model B); lagged channel choice, lagged product returns, age, and gender (Model C); and lagged product returns (Model D). We found that none of these models improved over our proposed model, which assumes that q_h varies randomly across customers and does not change over time (see Table 5). The proposed model’s superiority to Model B indicates that marketing does not significantly affect the length of the trial period. The comparison with Model D suggests that at least one measure of unsatisfying experience—product returns—does not encourage learning. A possible reason for this is that returning a book is not an unsatisfying experience. This is in line with previous work showing that when firms effectively manage service failure, a negative experience might turn into a positive one. Product returns can contribute to generate customer satisfaction and reinforce the relationship with the firm (Petersen and Kumar 2009).

To investigate the second issue, we posited a general correlation matrix in model parameters across both stages or made the posttrial parameters functions of the trial parameters plus age, gender, and first channel chosen. None of these models fit better than the proposed model, or they

TABLE 4

Classifying Learners

<table>
<thead>
<tr>
<th>Categories</th>
<th>Decision Strategy</th>
<th>Classification Rule^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preference based</td>
<td>State dependence < Preference (C vs. S) State dependence < Preference (I vs. S)</td>
</tr>
<tr>
<td>2</td>
<td>Preference based</td>
<td>State dependence > Preference (C vs. S) State dependence < Preference (I vs. S)</td>
</tr>
<tr>
<td>3</td>
<td>Preference based</td>
<td>State dependence < Preference (C vs. S) State dependence > Preference (I vs. S)</td>
</tr>
<tr>
<td>4</td>
<td>Non-preference based</td>
<td>State dependence > Preference (C vs. S) State dependence > Preference (I vs. S)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categoriesb</th>
<th>Marketing Responsivenessc</th>
<th>Classification Rule^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High</td>
<td>Marketing elasticity (C vs. S) > Median marketing elasticity (C vs. S) Marketing elasticity (I vs. S) > Median marketing elasticity (I vs. S)</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>Marketing elasticity (C vs. S) < Median marketing elasticity (C vs. S) Marketing elasticity (I vs. S) > Median marketing elasticity (I vs. S)</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>Marketing elasticity (C vs. S) > Median marketing elasticity (C vs. S) Marketing elasticity (I vs. S) < Median marketing elasticity (I vs. S)</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>Marketing elasticity (C vs. S) < Median marketing elasticity (C vs. S) Marketing elasticity (I vs. S) < Median marketing elasticity (I vs. S)</td>
</tr>
</tbody>
</table>

^aC stands for the catalog, I for the Internet, and S for the store.
^bWe have four categories in total (three under “High Marketing Responsiveness” and one under “Low Marketing Responsiveness”) and consider two types of direct marketing communications (e-mails sent and catalogs sent). Therefore, we have a total of $4^2 = 16$ possible outcomes.
^cWe classify customers as low responsive to marketing only if all their marketing elasticities are less than the median values (or are not significant) across both the trial and posttrial models.
Notes: Only paths greater than 2% threshold are represented. From Table 5, Panel B, customers are classified as more marketing responsive if any of their four marketing elasticities (catalogs: catalog vs. store, catalogs: Internet vs. store; e-mails: catalog vs. store; e-mails: Internet vs. store) are above the median for that elasticity across customers. As long as the customer is exceptionally responsive to some form of marketing, we classify him or her as highly responsive. Although we could have used other classification rules, the important issue is not the level of responsiveness per se but rather how marketing responsiveness changes from the trial to the posttrial stage. Using this rule, we find that 100% of the learners are highly marketing responsive in the trial period and 44% in the posttrial period. We also tested a more restrictive classification rule, requiring two marketing elasticities, not one, to be greater than the median. Using this rule, the number of responsive consumers decreases (from 100% to 91.6% in the trial period, and from 44% to 3.6% posttrial), but the same general finding holds: Learners are less marketing sensitive after they change.

Overall, we find that the relatively simple proposed model performed better than plausible though more complex models. It might be that the more complex models overtaxed the data or that the proposed model captures the essence of decision process evolution, so that elaborations on that model do not add significantly more explanatory power.

Replication in a Different Business Context

We perform a second empirical analysis to validate our results in a different business context. We obtained data from a U.S. retailer that sells durables and apparel through catalogs, stores, and the Internet. The company opened two stores in July 2000 and May 2001 that were relatively close to each other. We select a sample of customers who first purchased from one of these stores after May 2001 and lived within 15 miles of these stores. Therefore, we include only customers for whom the catalog, Internet, and store channels were available. The observation period is May 2001–September 2004. We include only active customers who made at least three purchases. The final sample size is 506 households. We have information on channel choice and catalog communications. Table 6 summarizes the data.

This is a useful data set because the opening of the stores is a discontinuity in the customer experience. Our theory posits that the decision process evolves when consumers have the motivation and ability to learn and are unfamiliar with the task. These conditions apply to our first data set, because the customer was just acquired. We believe these conditions would hold in the case of the second data set as well, because there has been an abrupt change in the channel environment. Indeed, Moe and Yang (2009) show that disruptive events force consumers to reexamine and possibly adjust their preferences and habits.

We compare our proposed model with the logit model that does not distinguish between trial and posttrial stages (Model 1). We also compare with a multinomial logit that assumes that each customer changes decision process after the same a priori defined number (15) of purchase occasions (Model 2). The DIC statistics confirm the superiority of the proposed model over Models 1 and 2 (DIC$_{\text{proposed}} = 11,711$).

6We use 15 because this was the median number of purchase occasions. We tested other numbers and also found the proposed model was superior (DIC = 12,085.5 for 3 purchase occasions, 11,995.7 for 5, 12,371.5 for 12, and 12,275.5 for 18 versus DIC = 11,711.0 for the proposed model).
number of purchase occasions a learner needs to update his is .25 and for learners is .53. We also find that the expected processes. The average probability of changing for stayers we expect 35% of customers to have changed their decision by the end of the data collection is .35, which means that customers. The expected value of the probability of chang-

reconfirmation of H₀ Average number of purchase 5

DIC = 12,082, DICmodel2 = 12,545). This provides reconfirmation of H₁ and H₂, that the customer decision process evolves and that this evolution is heterogeneous across customers. The expected value of the probability of chang-

ing by the end of the data collection is .35, which means that we expect 35% of customers to have changed their decision processes. The average probability of changing for stayers is .25 and for learners is .53. We also find that the expected number of purchase occasions a learner needs to update his

TABLE 5
Robustness Checks for the Proposed Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>DIC</th>
<th>Hit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed model</td>
<td>Two-stage multinomial channel choice model (Equations 2–5)</td>
<td>6525.8</td>
<td>72.9%</td>
</tr>
<tr>
<td>Model A</td>
<td>Two-stage multinomial channel choice model (with q, a function of age and gender)</td>
<td>6598.2</td>
<td>53.1%</td>
</tr>
<tr>
<td>Model B</td>
<td>Two-stage multinomial channel choice model (with q₀, a function of marketing)</td>
<td>6999.4</td>
<td>49.2%</td>
</tr>
<tr>
<td>Model C</td>
<td>Two-stage multinomial channel choice model (with qₙ, a function of age, gender, lagged number of channel used, and lagged returns)</td>
<td>7284.8</td>
<td>43.9%</td>
</tr>
<tr>
<td>Model D</td>
<td>Two-stage multinomial channel choice model (with qₙ₀, a function of lagged returns)</td>
<td>7202.8</td>
<td>42.4%</td>
</tr>
</tbody>
</table>

DIC_{model1} = 12,082, DIC_{model2} = 12,545). This provides reconfirmation of H₁ and H₂, that the customer decision process evolves and that this evolution is heterogeneous across customers. The expected value of the probability of chang-

ing by the end of the data collection is .35, which means that we expect 35% of customers to have changed their decision processes. The average probability of changing for stayers is .25 and for learners is .53. We also find that the expected number of purchase occasions a learner needs to update his

TABLE 6
Descriptive Statistics for the Durable and Apparel Data Set (n = 506)

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of purchase occasions (per year)</td>
<td>5.7</td>
<td>3.1</td>
<td>1.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Average number of purchase occasions over relationship</td>
<td>14.9</td>
<td>5.7</td>
<td>9.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Average number of returns (per year)</td>
<td>.6</td>
<td>1.1</td>
<td>.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Average number of catalogs received (per week)</td>
<td>.6</td>
<td>.8</td>
<td>.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Age (years)</td>
<td>53.4</td>
<td>11.2</td>
<td>33.0</td>
<td>97.0</td>
</tr>
</tbody>
</table>

Channel Usage:
Mainly catalog 9.3%
Mainly Internet 5.7%
Mainly store 13.6%
Catalog and store 20.6%
Catalog and Internet 4.0%
Internet and store 3.8%
Catalog, Internet, and store 43.1%

Mainly means that at least 95% of purchases were made on that channel. Similarly, we classified as two-channel users/three-channel users those customers who made at least 95% of purchases using two channels/three channels.

Managerial Implications: Identifying Learners and Marketing to Them

Our results have established that there is a learner segment—a segment that significantly changes its decision process within a relatively short time. However, two questions naturally arise: In concrete terms, who is the learner segment? and Can we use this information to design more effective marketing programs? We answer the first question with a discriminant analysis and the second with a profitability scenario of a “right-channeling” strategy.

We hypothesize five variables that should distinguish between learners and stayers:

1. **Acquisition channel**: Our focal company predominantly uses “street agents” or “door-to-door” agents to acquire customers. Street agents approach customers directly outside the company’s bookstores; door-to-door agents go directly to prospects’ residences. We hypothesize that customers acquired through door-to-door agents would be less familiar with the company and its various marketing channels. Therefore, they would be more open to information and open to learning about the various channels (i.e., they would more likely be learners).

2. **Age**: Younger customers should be more open to exploring different channels and thus are more likely to be learners.

3. **Gender**: We have no particular hypotheses on gender, but given the literature on gender differences in shopping, we thought it was worthwhile to explore this variable.

4. **Immediate e-mail suppliers**: The firm asks for customers’ e-mails only when the customer is acquired. Some customers supply their e-mail addresses immediately, while others wait before doing so. Therefore, immediate e-mail suppliers are customers who provided their e-mail addresses at the time of acquisition. We hypothesize that the immediate suppliers would be more open to information and thus more likely to be learners.

5. **Big city dwellers**: Customers who live in big cities should be more familiar with various shopping alternative and thus less likely to be learners.

Table 8, Panel A, shows the means of these variables for learners and stayers. Three of our hypotheses are confirmed: Learners are more likely to be acquired through door-to-door agents, they are younger, and they are more likely to
TABLE 7
Estimates of Parameter Means: Two-Stage Channel Choice Model (Durable and Apparel Data Set)

<table>
<thead>
<tr>
<th></th>
<th>Catalog Versus Store</th>
<th>Internet Versus Store</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parametera</td>
<td>Elasticityb</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial</td>
<td>−1.46 (.19)</td>
<td>—</td>
</tr>
<tr>
<td>Posttrial</td>
<td>−33.25 (15.90)</td>
<td>—</td>
</tr>
<tr>
<td>Catalogs Sent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial</td>
<td>.51 (.10)</td>
<td>.22</td>
</tr>
<tr>
<td>Posttrial</td>
<td>−.01 (2.82)</td>
<td>.04</td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial</td>
<td>.14 (.02)</td>
<td>—</td>
</tr>
<tr>
<td>Posttrial</td>
<td>1.63 (1.08)</td>
<td>—</td>
</tr>
<tr>
<td>State Dependence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial</td>
<td>−.09 (.06)</td>
<td>—</td>
</tr>
<tr>
<td>Posttrial</td>
<td>2.35 (2.34)</td>
<td>—</td>
</tr>
</tbody>
</table>

*a A positive coefficient means that a customer is more likely to choose channel j than the base channel. The base channel is the store.

*b We computed elasticities at the mean value of the continuous variables and the modal of the categorical variables.

Notes: Bold indicates that the 95% posterior interval for the parameter does not include zero. The standard deviation of the posterior distribution is shown in parentheses.

TABLE 8
Discriminant Analysis and Profitability Scenarios of Marketing to Learners

A: Mean Characteristics of Learners and Stayers

<table>
<thead>
<tr>
<th>Variable</th>
<th>Learners</th>
<th>Stayers</th>
<th>p-Value for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door-to-door agent acquisition</td>
<td>60.9%</td>
<td>49.7%</td>
<td>.003</td>
</tr>
<tr>
<td>Age</td>
<td>41.2 years</td>
<td>44.5 years</td>
<td>.002</td>
</tr>
<tr>
<td>Gender</td>
<td>70.2% female</td>
<td>72.4% female</td>
<td>.525</td>
</tr>
<tr>
<td>Immediate e-mail suppliers</td>
<td>24.9%</td>
<td>2.7%</td>
<td>.000</td>
</tr>
<tr>
<td>Big city dwellers</td>
<td>52.0%</td>
<td>54.4%</td>
<td>.533</td>
</tr>
</tbody>
</table>

B: Classification Matrix of Learners Versus Stayers

<table>
<thead>
<tr>
<th>Predicted Group Membership (Number)</th>
<th>Stayer</th>
<th>Learner</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stayer</td>
<td>708</td>
<td>80</td>
<td>788</td>
</tr>
<tr>
<td>Learner</td>
<td>85</td>
<td>145</td>
<td>230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted Group Membership (Conditional Probability of Correct Prediction)</th>
<th>Stayer</th>
<th>Learner</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stayer</td>
<td>89.8%</td>
<td>10.2%</td>
<td></td>
</tr>
<tr>
<td>Learner</td>
<td>37.0%</td>
<td>63.0%</td>
<td></td>
</tr>
</tbody>
</table>

Hit Rate = (708 + 145)/1018 = 83.8%

C: Profitability Analysis: E-Mail-Early Versus E-Mail-Late Strategy

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Profits per Purchase Occasion</th>
<th>Web Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Period</td>
<td>Second Period</td>
</tr>
<tr>
<td>E-mail early</td>
<td>$16.81</td>
<td>$14.22</td>
</tr>
<tr>
<td>E-mail late</td>
<td>$11.08</td>
<td>$13.99</td>
</tr>
</tbody>
</table>

*a We used customers who had at least seven purchases. We noted the number of e-mails each customer received. Then we reallocated them to a 70-30 split for the e-mail-early strategy and a 30-70 split for the e-mail-late strategy. The e-mails were used on purchase occasions 1, 2, and 3 (early) and 5, 6, and 7 (late), with the exact number depending on the number of e-mails the customer received and the allocation dictated by the strategy being simulated.
supply their e-mail address immediately. Our next step is to estimate the discriminant function to use for classification. Results are shown in Table 8, Panel B. The hit rate is 83.8%, significantly better than the random assignment standard of 65.5% (p-value = .000) (cf. in Lehmann, Gupta, and Steckel 1998, p. 663). The model does not perform equally well in classifying learners: 37% of learners are misclassified. However, 63% of our predicted learners are actually learners, whereas only 10.2% of the predicted stayers turn out to be learners. In summary, the discriminant analysis shows we can identify the learners in concrete terms and classify customers as either learners or stayers.

By definition, the learner segment changes its decision process relatively quickly after acquisition. To illustrate the implications of this and how our discriminant analysis could be used in marketing to this group, we conduct a profitability analysis involving right-channeling learners. We assume the firm’s profit margin is higher for Internet purchases (50%) versus catalog or store purchases (30%). Therefore, the company wants to encourage learners to use the Internet, and it knows that e-mails tend to do this (Table 3). The question is, Should those e-mails be used directly after customer acquisition, or later, after the customer has had a chance to get “settled”? Our results suggest the “e-mail-early” approach is better because learners are more receptive to marketing directly after they have been acquired.

The e-mail-early strategy allocates e-mails toward the purchase occasions immediately after the customer has been acquired. The e-mail-late strategy allocates e-mails toward the later purchase occasions. We use the discriminant function to identify learners and the parameter estimates obtained at the individual level to simulate channel choices under each strategy. Table 8, Panel C, summarizes the results and shows that, as we expected, the e-mail-early campaign generates approximately 24% more profits ($15.52 – $12.54/$12.54) by encouraging earlier usage of the less costly Internet channel. This analysis shows that learners can be identified sensibly with concrete measures, and profits can be leveraged through appropriate marketing communication activities.

Conclusions

Key Results and Implications

The central questions of this study are as follows: (1) Do customers evolve to a different channel choice process over time? (2) If so, how many customers evolve? (3) How can we characterize the decision process of customers who evolve? and (4) What are the managerial implications for channel management?

To answer these questions, we characterized the channel choice decision process using the three main factors that previous researchers have used to study channel choice: channel preference, state dependence or inertia, and marketing. We hypothesized that (1) the channel choice decision process evolves over time, (2) the time of this evolution varies across customers, (3) channel preferences become more relevant over time, (4) state dependence becomes less relevant over time, and (5) marketing communication is less effective over time. We developed a two-stage channel choice model to test these hypotheses and answer our key questions. We investigated customer channel choice behavior in a contractual setting in the book retail industry. As a robustness check, we analyzed a U.S. retailer of durables and apparel. Our key findings and managerial implications are as follows:

• Customers’ channel choice decision processes evolve over time. This provides managers with the strategic insight that new-to-the-channel customers need to be treated differently from mature customers in terms of channel decisions. Operationally, it means that managers must take into account how recently the customer has been acquired in predicting channel choices.

• A significant portion of customers are expected to shift (ranging from 22% [newly acquired customers] to 35% [new channel introduction]). This suggests that the customer’s speed of evolution can serve as a basis for segmentation: learners versus stayers.

• The predominant pattern of evolution is from a more marketing-responsive to a less marketing-responsive decision process. This means that the newly acquired customer or the customer who experiences a new channel introduction is more receptive to right-channeling than the mature customer. In general, mature customers will be less amenable to marketing efforts aimed at getting them to try new channels. This suggests that channel strategies for mature customers should ensure these customers are very satisfied with the service experience of the channel(s) they have chosen to use.

• Learners can be characterized through discriminant analysis, and the discriminant analysis can be used to identify the learner segment. In our case of the book retailer, we found that learners are likely to be acquired through doorto-door agents, immediately provide their e-mail addresses, and be younger. The result is a concrete simulation of how managers can identify learners and how they might market to them. Policy simulation can be used to examine the impact of various marketing strategies. We illustrate how an e-mail-early strategy can increase learners’ profitability. Transitioning consumers early into the cheapest Internet channel increased the company’s profits by approximately 24%.

The key hypotheses that (1) the customer decision process evolves, (2) the evolution is heterogeneous across customers, and (3) customers become less responsive to marketing over time were confirmed in two databases in very different situations (after the customer is acquired by a book retailer and after the introduction of a new purchase channel by a durables/apparel retailer). We confirmed our hypotheses that the process becomes more preference based and less inertial over time for the book retailer database but not for the durables/apparel database. The importance of preference in the trial stage in the durables/apparel database could be due to customers being highly familiar with purchase channels in this industry. The type of store the company introduced was similar to that of other U.S. competitors. Therefore, adding a store was not an entirely new experience for the customer. In terms of the learning theory that motivates decision process evolution, customers were relatively familiar with the task, which diminished learning.

The most important conceptual contribution of this work is that the customer’s channel choice process evolves over
time. We are encouraged regarding the generalizability of this finding in two databases. The underlying theoretical reason for evolution is customer learning, stimulated by three conditions: motivation and ability, lack of task familiarity, and dissatisfying experiences. To the extent these conditions are present in other decision processes (e.g., brand choice, price search, service usage), we would expect this evolution to hold beyond the domain of channel choice.

We do not advocate our model as the only way to model this evolution; the main point is that evolution should be considered in some way. We believe the taxonomy we developed for characterizing the channel choice process (Figure 2) is useful and produced a revealing portrait of choice process evolution (Figure 3).

Limitations and Further Research

There are limitations to this study that provide opportunities for further research. First, our work is based on what we can observe, namely, customers’ purchase histories. A well-designed panel survey could enrich the characterization of stayers and learners and, of course, of their decision processes.

Second, we estimated different specifications of the proposed model that relax the assumption of independence between trial and posttrial stages. Although our results provide support for the independence assumption, the data we used might not be strong enough to pick this relationship up and/or the alternative modeling specifications might overtax the model with too many parameters. Additional research could investigate this issue further.

Third, the population of interest in this study is heavy users who account for high sales. This focuses attention on the best customers and avoids including customers active only during the trial stage. Work in the future might examine the evolution of the channel choice decision process for light users while accounting for customer churn. This would allow for a more complete analysis of customer retention and profitability.

Fourth, we focus on channel choice for the purchase decision and do not investigate search behavior (Verhoef, Neslin, and Vroomen 2007). Further research might explore the choice of channels for both search and purchase and the evolution of these two decision processes, but this would require the availability of both search and choice longitudinal data.

Fifth, we examined the impact of a single disruption in the environment on the ensuing transition from a trial to a posttrial decision process. A more general analysis would observe several disruptions. Related to this is the question of whether, in the face of a disruption, the trial model starts from scratch or is related to the previous decision process the customer was using. To explore this, we examined our new store opening data. In that case, we had data for a subset (n = 115 customers) who purchased before the opening of the stores. For these customers, we estimated a binomial logit model for choosing between the catalog and the Internet during the pre-store-opening period. We estimated individual-specific coefficients and correlated them with the individual-specific coefficient we estimated for the trial model. We found a correlation of .38 between the intercept terms representing preference for catalog versus Internet and a correlation of .43 between the catalog response coefficients representing impact on catalog choice rather than Internet. These correlations were both statistically significant at the .05 level and, in our view, promising given the small sample size and noise level in the data. These results also reinforce our conjecture that there was no change in the importance of preference associated with the opening of the store because of already established task familiarity. Notably, and consistent with Moe and Yang’s view of environment changes as disruptions of customer habits, we found virtually no correlation (−.02) between the state dependence coefficients. Overall, this points to the plausibility of multievent modeling in which trial decision processes build on the decision process that existed before the market disruption.

Sixth, we did not examine the specific content of e-mails and catalogs as it pertains to channel choice. Certainly, the catalog, for example, listed store locations and included the URL of the company’s website. However, to our knowledge, there were no time-specific campaigns to encourage customers to use various channels. An examination of the potential for such campaigns would be interesting grounds for further research.

Seventh, a significant finding of our work is that marketing information affects channel choice in the trial stage but does not affect the timing of moving from the trial to the posttrial stage. This suggests that evolution is a customer-specific trait. Our robustness checks verify this result, but it is possible that in different contexts, marketing could influence not only channel choice but also the speed of evolution. It may be possible to design the information content of marketing to influence the timing of evolution. This would be supported, for example, by Petty and Cacioppo (1986, p. 126), who suggest that the ability to learn can depend on the message. We believe this is a fertile area for further research in the context of learning new decision processes, the domain of our work. Eighth, the focus of this study is on the customer channel choice decision process. Further research might also investigate whether other aspects of the customers’ decisions, particularly purchase incidence and purchase quantity, evolve over time.

REFERENCES

